Fast emitting oxide scintillators and phosphors: Energy transfer processes in Ca₃Tb₂Si₃O₁₂:Eu³⁺

Irene Carrasco Ruiz

Luminescent Materials Group. UNIVR

LUMINET Mid-term meeting

Augsburg 2014

OUTLINE

Motivation
Sample details
Results
Conclusions
Future work

MOTIVATION

Rare earth phosphors

- Emitting
- Multicomponent
 - Tunable

• Tb³⁺ good sensitizer for Eu³⁺ red emission by exploiting its strong 4f-5d absorption bands located in VUV.

VUV sensitization effect in Tb³⁺ - Eu³⁺ codoped systems paved the way to obtain efficient VUV phosphors.

- Green emission from Tb³⁺ and red emission from Eu³⁺ have many applications in lighting and displays.
- Energy transfer process involving Tb³⁺ Eu³⁺ itself is quite complicated.

Interesting phenomena to study.

Silicate → Good transparency in UV/VIS → Chemical stability → Low cost

Silico-carnotite type
structure
Good stability for RE
doping from Eu-Lu
ions

OBJECTIVE

Study the Tb³⁺-Eu³⁺ energy transfer processes in Ca₃Tb₂Si₃O₁₂:Eu³⁺.

METHODOLOGY

Performing RT luminescence and decay time experiments on both undoped and Eu³⁺ doped samples

SAMPLE DETAILS

 $Ca_3Tb_2Si_3O_{12}$ and $Ca_3Tb_2Si_3O_{12}$:Eu³⁺ (5 mol%) Synthesized by SSR (III TT at 1450 °C x 3h) Pure phase

LUMINESCENCE RESULTS

RT EMISSION

 $\lambda_{\rm exc} = 377 \text{ nm}^{5} D_{3} (Tb^{3+})$

$$\frac{I_{7_{F_2}}(Eu^{3+})}{I_{7_{F_5}}(Tb^{3+})} = \mathbf{123} \qquad \frac{I_{7_{F_4}}(Eu^{3+})}{I_{7_{F_5}}(Tb^{3+})} = 55$$

Very efficient energy transfer from Tb³⁺ to Eu³⁺

LUMINESCENCE RESULTS

RT EXCITATION

Only a few Eu³⁺ excitation bands are observed (labeled with *)

These results confirm the Tb³+ → Eu³+ energy transfer

LUMINESCENCE RESULTS

Sr₃Tb(PO₄)₃: Eu³⁺ (10%)

M.Bettinelli et al.Optical Materials 33 (2010) 119-122

Relative intensity of Eu^{3+ 5}D₀ bands with respect to Tb^{3+ 5}D₄ ones, depends on excitation pathway

Same behaviour observed In Ca₃Tb₂Si₃O₁₂:Eu³⁺ (5 mol%)

In the 570-720nm range:

$$\frac{I_{em}(\lambda_{exc} = 377nm)}{I_{em}(\lambda_{exc} = 488nm)} = 1.53$$

LUMINESCENCE RESULTS RT DECAY CURVES

Exponential decay Short time constant: $\tau = 164 \mu s$

 $Ca_3Tb_2Si_3O_{12}:Eu^{3+}$ (5 mol%)

Exponential decay Time constant: $\tau = 1.78$ ms

Exponential decay Time constant: $\tau = 1.80$ ms

No data for $Tb^{3+} ^5D_4 \rightarrow ^7F_5$ transition in $Ca_3 Tb_2 Si_3 O_{12}$: Eu^{3+} due to its very low intensity

LUMINESCENCE RESULTS EFFICIENCY OF THE PROCESS

Sr₃Tb(PO₄)₃: Eu³⁺ (10%)

M.Bettinelli et al.Optical Materials 33 (2010) 119-122

$$\eta_T = 1 - \frac{\tau_{Tb-Eu}}{\tau_{Tb}} = 0.93$$

 $Ca_3Tb_2Si_3O_{12}:Eu^{3+}$ (5 mol%)

Efficiency of the energy transfer $\eta_{\tau} > 0.93$

CONCLUSIONS

Clear evidences of energy transfer from Tb³⁺ to Eu³⁺

Tb³+ emission almost quenched

→ very strong Eu³+ emission

Efficient changes in the emission colour of the material by the addition of 5 mol% Eu³⁺

CURRENT WORK

Synthesis of samples with various Eu³⁺ doping concentration under 5 mol%

FUTURE WORK

VUV luminescence experiments

Study of diluted Tb³⁺ compounds

Nanosized materials

Thank you for your attention

LUMINESCENT MATERIALS LAB

